\documentclass{article} \usepackage{amsmath} \usepackage{hyperref} \usepackage{IEEEtrantools} \title{Power Supply} \author{Sam Anthony} \begin{document} \maketitle Switching Regulator Component Selection \& Sizing --- Phil's Lab \#71: \\ \url{https://youtu.be/FqT_Ofd54fo} \section{Requirements} Input voltage range: \begin{equation} 9V \le V_{In} \le 16V \end{equation} \begin{equation} V_{In,nom} = 12.7V \end{equation} Nominal output voltage: \begin{equation} V_{Out,nom} = 5V \end{equation} Maximum load current: \begin{equation} I_{Load,max} = 250 mA \end{equation} \section{IC selection} Diodes Inc. AP64100Q: \\ \url{https://www.diodes.com/assets/Datasheets/AP64100Q.pdf} Switching frequency: \begin{equation} 100 kHz \le f_{sw} \le 2.2 MHz \end{equation} Select a frequency of 2MHz: \begin{equation} f_{sw} = 2 MHz \end{equation} \begin{equation} RT[k \Omega] = \frac{100000}{f_{sw}[kHz]} = 50 k\Omega \end{equation} Max. high-side current: \begin{equation} I_{Peak,lim} = 2.2 A \end{equation} \section{Maximum switching current} Efficiency: \begin{equation} \eta \approx 0.85 \end{equation} Duty cycle: \begin{equation} \delta = \frac{V_{Out}}{V_{In} \cdot \eta} \end{equation} \begin{equation} \delta(V_{In,min}) \approx 0.654 \end{equation} \begin{equation} \delta(V_{In,nom}) \approx 0.464 \end{equation} \begin{equation} \delta(V_{In,max}) \approx 0.368 \end{equation} Inductor ripple current estimated using average recommended inductor value from datasheet: \begin{equation} L_{avg} = \frac{6.8 \mu H + 33 \mu H}{2} = 19.9 \mu H \end{equation} \begin{equation} \Delta I_L = \frac{(V_{In} - V_{Out}) \cdot \delta}{f_{sw} \cdot L_{avg}} \\ \end{equation} \begin{equation} \Delta I_L(V_{In,min}) = \frac{(9V - 5V) \cdot 0.654}{2MHz \cdot 19.9 \mu H} = 65.7 mA \end{equation} \begin{equation} \Delta I_L(V_{In,nom}) = \frac{(12.7V - 5V) \cdot 0.464}{2MHz \cdot 19.9 \mu H} = 86.4 mA \end{equation} \begin{equation} \Delta I_L(V_{In,max}) = \frac{(16V - 5V) \cdot 0.368}{2MHz \cdot 19.9 \mu H} = 102 mA \end{equation} Available output current: \begin{IEEEeqnarray}{rCl} I_{Avail,min} & = & I_{Peak,lim} - \frac{\Delta I_{L,max}}{2} \\ & = & 2.2A - 51 mA \\ & = & 2.15 A > I_{Load,max} \end{IEEEeqnarray} Max power supply current: \begin{equation} I_{Supply,max} = I_{Load,max} + \frac{\Delta I_{L,max}}{2} = 301mA \end{equation} \section{Inductor selection} \begin{equation} L = \frac{V_{Out} \cdot (V_{In} - V_{Out})}{\Delta I_L \cdot f_{sw} \cdot V_{In}} \end{equation} Estimate ripple current as $20\%$--$40\%$ of maximum supply current: \begin{equation} \Delta I_{L,approx.} = 0.30 \cdot 301 mA = 90.3 mA \end{equation} \begin{equation} L(V_{In,min}) = \frac{5V \cdot (9V - 5V)}{90.3mA \cdot 2MHz \cdot 9V} = 12.3 \mu H \end{equation} \begin{equation} L_(V_{In,nom}) = \frac{5V \cdot (12.7V - 5V)}{90.3mA \cdot 2MHz \cdot 12.7V} = 16.8 \mu H \end{equation} \begin{equation} L(V_{In,max}) = \frac{5V \cdot (16V - 5V)}{90.3mA \cdot 2MHz \cdot 16V} = 19.0 \mu H \end{equation} \end{document}