1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
package main
import (
"fmt"
g "github.com/AllenDang/giu"
"image"
"image/draw"
_ "image/jpeg"
"os"
"volute/compressor"
"volute/mass"
"volute/pressure"
"volute/temperature"
"volute/util"
"volute/volume"
)
const (
gasConstant = 8.314472
airMolarMass = 0.0289647 // kg/mol
)
// numPoints is the number of datapoints on the compressor map.
var numPoints = 1
var (
displacement = 2000 * volume.CubicCentimetre
// volumeUnitIndex is used to index volume.UnitStrings().
volumeUnitIndex = volume.DefaultUnitIndex
engineSpeed = []int32{2000}
volumetricEfficiency = []int32{80}
intakeAirTemperature = []temperature.Temperature{{25, temperature.Celcius}}
// temperatureUnitIndex is used to index temperature.UnitStrings().
temperatureUnitIndex = temperature.DefaultUnitIndex
manifoldPressure = []pressure.Pressure{pressure.Atmospheric()}
// pressureUnitIndex is used to index pressure.UnitStrings().
pressureUnitIndex = pressure.DefaultUnitIndex
)
var pressureRatio []float32
func pressureRatioAt(point int) float32 {
u := pressure.Pascal
m := manifoldPressure[point] / u
a := pressure.Atmospheric() / u
return float32(m / a)
}
func init() {
pressureRatio = append(pressureRatio, pressureRatioAt(0))
}
var (
engineMassFlowRate []mass.FlowRate
// selectedMassFlowRateUnit is used to index mass.FlowRateUnitStrings().
selectedMassFlowRateUnit = mass.DefaultFlowRateUnitIndex
)
func massFlowRateAt(point int) mass.FlowRate {
rpm := float32(engineSpeed[point])
disp := float32(displacement / volume.CubicMetre)
ve := float32(volumetricEfficiency[point]) / 100.0
cubicMetresPerMin := (rpm / 2.0) * disp * ve
iat, err := intakeAirTemperature[point].AsUnit(temperature.Kelvin)
util.Check(err)
pres := manifoldPressure[point] / pressure.Pascal
molsPerMin := (float32(pres) * cubicMetresPerMin) / (gasConstant * iat)
kgPerMin := molsPerMin * airMolarMass
mfr := mass.FlowRate(kgPerMin/60.0) * mass.KilogramsPerSecond
return mfr
}
func init() {
engineMassFlowRate = append(engineMassFlowRate, massFlowRateAt(0))
}
var (
compressorImage *image.RGBA
compressorTexture *g.Texture
selectedCompressor compressor.Compressor
)
func init() {
manufacturer := "garrett"
series := "g"
model := "25-660"
c, ok := compressor.Compressors()[manufacturer][series][model]
if !ok {
fmt.Printf("compressor.Compressors()[\"%s\"][\"%s\"][\"%s\"] does not exist.\n",
manufacturer, series, model,
)
os.Exit(1)
}
setCompressor(c)
}
func main() {
wnd := g.NewMasterWindow("volute", 400, 200, 0)
go updateCompImg()
m := <-updatedCompImg
g.EnqueueNewTextureFromRgba(m, func(tex *g.Texture) {
compressorTexture = tex
})
wnd.Run(loop)
}
func setCompressor(c compressor.Compressor) {
f, err := os.Open(c.FileName)
util.Check(err)
defer f.Close()
j, _, err := image.Decode(f)
util.Check(err)
b := j.Bounds()
m := image.NewRGBA(image.Rect(0, 0, b.Dx(), b.Dy()))
draw.Draw(m, m.Bounds(), j, b.Min, draw.Src)
selectedCompressor = c
compressorImage = m
go updateCompImg()
}
func loop() {
g.SingleWindow().Layout(
engineDisplacementRow(),
g.Table().
Size(g.Auto, 190).
Rows(
engineSpeedRow(),
volumetricEfficiencyRow(),
intakeAirTemperatureRow(),
manifoldPressureRow(),
pressureRatioRow(),
massFlowRateRow(),
duplicateDeleteRow(),
).
Columns(
columns()...,
).
Flags(g.TableFlagsSizingFixedFit),
selectCompressor(),
g.Custom(compressorWidget),
)
}
|