1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
package main
import (
"fmt"
"image"
"image/color"
"os"
"sync"
"github.com/faiface/mainthread"
"volute/gui"
"volute/gui/layout"
"volute/gui/widget"
"volute/gui/win"
)
const (
WIDTH = 800
HEIGHT = 600
POINTS = 6
R = 8314.3 // gas constant
M = 28.962 // molar mass of air
WIDEST_LABEL = "mass flow (kg/min)"
)
func run() {
wg := new(sync.WaitGroup)
defer wg.Wait()
focus := NewFocus([]int{1, POINTS, POINTS, POINTS, POINTS})
defer focus.Close()
displacementChan := make(chan uint)
displacementBroadcast := NewBroadcast(displacementChan)
defer displacementBroadcast.Wait()
var (
rpmChan [POINTS]chan uint
veChan [POINTS]chan uint
imapChan [POINTS]chan uint
actChan [POINTS]chan uint
flowChan [POINTS]chan float64
)
makeChans(rpmChan[:], veChan[:], imapChan[:], actChan[:])
makeChans(flowChan[:])
w, err := win.New(win.Title("volute"), win.Size(WIDTH, HEIGHT))
if err != nil {
fmt.Println("error creating window:", err)
os.Exit(1)
}
mux, env := gui.NewMux(w)
defer close(env.Draw())
spawnWidgets(
displacementChan,
rpmChan, veChan, imapChan, actChan,
flowChan,
&focus, mux, wg,
)
// TODO: make these output properly on screen.
for i := 0; i < POINTS; i++ {
wg.Add(1)
go calculateFlow(
flowChan[i],
displacementBroadcast.AddDestination(),
rpmChan[i], veChan[i], actChan[i], imapChan[i],
wg,
)
}
focus.Focus(true)
eventLoop(env, &focus)
}
func spawnWidgets(
displacementChan chan uint,
rpmChan, veChan, imapChan, actChan [POINTS]chan uint,
flowChan [POINTS]chan float64,
focus *Focus, mux *gui.Mux, wg *sync.WaitGroup,
) {
bounds := layout.Grid{
Rows: []int{2, 7, 7, 7, 7, 7},
Background: color.Gray{255},
Gap: 1,
Split: split,
SplitRows: splitRows,
Margin: 0,
Border: 0,
BorderColor: color.Gray{16},
Flip: false,
}.Lay(image.Rect(0, 0, WIDTH, HEIGHT))
wg.Add(1)
go widget.Label("displacement (cc)", bounds[0], mux.MakeEnv(), wg)
wg.Add(1)
go widget.Input(
displacementChan,
bounds[1],
focus.widgets[0][0],
mux.MakeEnv(),
wg,
)
wg.Add(1)
go widget.Label("speed (rpm)", bounds[2], mux.MakeEnv(), wg)
wg.Add(1)
go widget.Label("VE (%)", bounds[3+POINTS], mux.MakeEnv(), wg)
wg.Add(1)
go widget.Label("IMAP (mbar)", bounds[4+2*POINTS], mux.MakeEnv(), wg)
wg.Add(1)
go widget.Label("ACT (°C)", bounds[5+3*POINTS], mux.MakeEnv(), wg)
wg.Add(1)
go widget.Label("mass flow (kg/min)", bounds[6+4*POINTS], mux.MakeEnv(), wg)
for i := 0; i < POINTS; i++ {
wg.Add(1)
go widget.Input( // speed
rpmChan[i],
bounds[3+i],
focus.widgets[1][i],
mux.MakeEnv(),
wg,
)
wg.Add(1)
go widget.Input( // VE
veChan[i],
bounds[4+POINTS+i],
focus.widgets[2][i],
mux.MakeEnv(),
wg,
)
wg.Add(1)
go widget.Input( // IMAP
imapChan[i],
bounds[5+2*POINTS+i],
focus.widgets[3][i],
mux.MakeEnv(),
wg,
)
wg.Add(1)
go widget.Input( // ACT
actChan[i],
bounds[6+3*POINTS+i],
focus.widgets[4][i],
mux.MakeEnv(),
wg,
)
wg.Add(1)
go widget.Output( // mass flow
flowChan[i],
bounds[7+4*POINTS+i],
mux.MakeEnv(),
wg,
)
}
}
func eventLoop(env gui.Env, focus *Focus) {
for event := range env.Events() {
switch event := event.(type) {
case win.WiClose:
return
case win.KbType:
switch event.Rune {
case 'q':
return
case 'h':
focus.Left()
case 'j':
focus.Down()
case 'k':
focus.Up()
case 'l':
focus.Right()
}
}
}
}
func makeChans[T any](chanss ...[]chan T) {
for i := range chanss {
for j := range chanss[i] {
chanss[i][j] = make(chan T)
}
}
}
func split(elements int, space int) []int {
bounds := make([]int, elements)
widths := []int{
widget.TextSize(WIDEST_LABEL).X,
widget.TextSize("123456").X,
}
for i := 0; i < elements && space > 0; i++ {
bounds[i] = min(widths[min(i, len(widths)-1)], space)
space -= bounds[i]
}
return bounds
}
func splitRows(elements int, space int) []int {
bounds := make([]int, elements)
height := widget.TextSize("1").Y
for i := 0; i < elements && space > 0; i++ {
bounds[i] = min(height, space)
space -= bounds[i]
}
return bounds
}
func calculateFlow(
flow chan<- float64,
displacementChan, rpmChan, veChan, actChan, imapChan <-chan uint,
wg *sync.WaitGroup,
) {
defer wg.Done()
defer close(flow)
var (
displacement Volume
rpm uint
ve uint
act Temperature
imap Pressure
v uint
ok bool
)
for {
select {
case v, ok = <-displacementChan:
displacement = Volume(v) * CubicCentimetre
case rpm, ok = <-rpmChan:
case ve, ok = <-veChan:
case v, ok = <-actChan:
act = Temperature{float64(v), Celcius}
case v, ok = <-imapChan:
imap = Pressure(v) * Millibar
}
if !ok {
return
}
flow <- massFlow(displacement, rpm, ve, act, imap)
}
}
func massFlow(displacement Volume, rpm, ve uint, act Temperature, imap Pressure) float64 {
density := (M / R) * float64(imap/Pascal) / act.AsUnit(Kelvin) // kg/m3
volumeFlow := float64(displacement/CubicMetre) * float64(rpm/2) * (float64(ve) / 100.0) // m3/min
return density * volumeFlow
}
func main() {
mainthread.Run(run)
}
|