1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
#include <xc.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "system.h"
#include "types.h"
#include "spi.h"
#include "eeprom.h"
#include "dac.h"
#include "can.h"
#include "signal.h"
#include "serial.h"
#include "table.h"
// TODO: auto baud detection
#define CAN_TIMING CAN_TIMING_10K
#define TAB_CTRL_CAN_ID 0x1272000 // Table Control Frame ID
#define SIG_CTRL_CAN_ID 0x1272100 // Signal Control Frame ID
#define ERR_CAN_ID 0x1272F00
#define ERR __LINE__
// Signals
typedef enum {
SIG_TACH = 0,
SIG_SPEED,
SIG_AN1,
SIG_AN2,
SIG_AN3,
SIG_AN4,
NSIG,
} Signal;
// Table Control filter.
// Used for writing/reading calibration tables.
static const CanId tblCtrlFilter = {
.isExt = true,
.eid = TAB_CTRL_CAN_ID};
// Signal Control filter.
// Used for writing/reading the CAN ID and encoding format of each signal.
// See `doc/datafmt.pdf'.
static const CanId sigCtrlFilter = {
.isExt = true,
.eid = SIG_CTRL_CAN_ID};
// Receive buffer 0 mask.
// RXB0 receives Table Control and Signal Control frames.
static const CanId rxb0Mask = {
.isExt = true,
.eid = 0x1FFFFF00, // all but LSB
};
// Receive buffer 1 mask.
// RXB1 is used for receiving signals.
// The mask is permissive: all messages are accepted and filtered in software.
static const CanId rxb1Mask = {
.isExt = true,
.eid = 0u, // accept all messages
};
// Calibration tables in EEPROM
static const Table tbls[NSIG] = {
[SIG_TACH] = {0ul*TAB_SIZE}, // tachometer
[SIG_SPEED] = {1ul*TAB_SIZE}, // speedometer
[SIG_AN1] = {2ul*TAB_SIZE}, // analog channels...
[SIG_AN2] = {3ul*TAB_SIZE},
[SIG_AN3] = {4ul*TAB_SIZE},
[SIG_AN4] = {5ul*TAB_SIZE},
};
// EEPROM address of encoding format structure for each signal.
// Each of these addresses point to a SigFmt structure in the EEPROM.
static const EepromAddr sigFmtAddrs[NSIG] = {
[SIG_TACH] = NSIG*TAB_SIZE + 0ul*SER_SIGFMT_SIZE, // tachometer
[SIG_SPEED] = NSIG*TAB_SIZE + 1ul*SER_SIGFMT_SIZE, // speedometer
[SIG_AN1] = NSIG*TAB_SIZE + 2ul*SER_SIGFMT_SIZE, // analog channels...
[SIG_AN2] = NSIG*TAB_SIZE + 3ul*SER_SIGFMT_SIZE,
[SIG_AN3] = NSIG*TAB_SIZE + 4ul*SER_SIGFMT_SIZE,
[SIG_AN4] = NSIG*TAB_SIZE + 5ul*SER_SIGFMT_SIZE,
};
// Encoding format and CAN ID of each signal
static volatile SigFmt sigFmts[NSIG];
// Load signals' encoding formats and CAN IDs from EEPROM
static Status
loadSigFmts(void) {
U8 oldGie, k;
Status status;
// TODO:
// This is a stub to load hard-coded SigFmts until the serialization format is finalized.
for (k = 0u; k < NSIG; k++) {
sigFmts[k] = (SigFmt) {
.id = {
.isExt = true,
.eid = 2365480958},
.start = 24u,
.size = 16u,
.order = LITTLE_ENDIAN,
.isSigned = false,
}; // J1939 EngineSpeed
}
// Disable interrupts so the volatile address pointers can be passed safely
oldGie = INTCONbits.GIE;
INTCONbits.GIE = 0;
for (k = 0u; k < NSIG; k++) {
status = serReadSigFmt(sigFmtAddrs[k], (SigFmt*)&sigFmts[k]);
if (status != OK) {
INTCONbits.GIE = oldGie; // restore previous interrupt setting
return ERR;
}
}
// Restore previous interrupt setting
INTCONbits.GIE = oldGie;
return OK;
}
static void
reset(void) {
_delay(100000);
asm("RESET");
}
void
main(void) {
Status status;
sysInit();
spiInit();
eepromInit();
dacInit();
canInit();
// Load signals' encoding formats and CAN IDs from EEPROM
status = loadSigFmts();
if (status != OK) {
// TODO reset();
}
// Setup MCP2515 CAN controller
canSetBitTiming(CAN_TIMING);
canSetMask0(&rxb0Mask); // RXB0 receives control messages
canSetFilter0(&tblCtrlFilter); // Table Control Frames
canSetFilter1(&sigCtrlFilter); // Signal Control Frames
canSetMask1(&rxb1Mask); // RXB1 receives signal values
// RXB1 messages are filtered in software
canIE(true); // enable interrupts on MCP2515's INT pin
canSetMode(CAN_MODE_NORMAL);
// TODO: remove
// Setup TMR1
T1CON = 0x31; // Fosc/4, 1:8 prescaler
PIE1bits.TMR1IE = 1; // enable interrupts
PIR1bits.TMR1IF = 0; // clear flag
// Enable interrupts
INTCON = 0x00; // clear flags
OPTION_REGbits.INTEDG = 0; // interrupt on falling edge of INT pin
INTCONbits.INTE = 1; // enable INT pin
INTCONbits.PEIE = 1; // enable peripheral interrupts
INTCONbits.GIE = 1; // enable global interrupts
for (;;) {
}
}
// Handle a Table Control Frame.
// See `doc/datafmt.ps'
static Status
handleTblCtrlFrame(const CanFrame *frame) {
// TODO
}
// Transmit the response to a Signal Control REMOTE FRAME.
// The response is a Signal Control DATA FRAME containing the CAN ID
// and encoding format of the requested signal.
static Status
respondSigCtrl(Signal sig) {
const volatile SigFmt *sigFmt;
CanFrame response;
if (sig >= NSIG) {
return ERR;
}
sigFmt = &sigFmts[sig];
response.id = (CanId){
.isExt = true,
.eid = SIG_CTRL_CAN_ID | (sig & 0xF),
};
response.rtr = false;
response.dlc = 7u;
// SigId
if (sigFmt->id.isExt) { // extended
response.data[0u] = 0x80 | ((sigFmt->id.eid >> 24u) & 0x1F); // EXIDE=1
response.data[1u] = (sigFmt->id.eid >> 16u) & 0xFF;
response.data[2u] = (sigFmt->id.eid >> 8u) & 0xFF;
response.data[3u] = (sigFmt->id.eid >> 0u) & 0xFF;
} else { // standard
response.data[0u] = 0u; // EXIDE=0
response.data[1u] = 0u;
response.data[2u] = (sigFmt->id.sid >> 8u) & 0x07;
response.data[3u] = (sigFmt->id.sid >> 0u) & 0xFF;
}
// Encoding
response.data[4u] = sigFmt->start;
response.data[5u] = sigFmt->size;
response.data[6u] = (U8)((sigFmt->order & 0x1) << 7u)
| (U8)((sigFmt->isSigned) ? 0x40 : 0x00);
return canTx(&response);
}
// Set the CAN ID and encoding format of a signal in response
// to a Signal Control DATA FRAME.
static Status
setSigFmt(const CanFrame *frame) {
Signal sig;
SigFmt sigFmt;
Status status;
// TODO:remove
CanFrame response;
response.id = (CanId){.isExt=true, .eid = 0xDEF};
response.rtr = false;
response.dlc = 2u;
response.data[0u] = 0xDE;
response.data[1u] = 0xFA;
canTx(&response);
// Extract signal number from ID
sig = frame->id.eid & 0xF;
if (sig >= NSIG) {
return ERR;
}
// Prepare to unpack DATA FIELD
if (frame->dlc != 7u) {
return ERR;
}
// Unpack SigId
if (frame->data[0u] & 0x80) { // EXIDE
// Extended
sigFmt.id.isExt = true;
sigFmt.id.eid = (((U32)frame->data[0u] & 0x1F) << 24u)
| ((U32)frame->data[1u] << 16u)
| ((U32)frame->data[2u] << 8u)
| ((U32)frame->data[3u] << 0u);
} else {
// Standard
sigFmt.id.isExt = false;
sigFmt.id.sid = (((U16)frame->data[2u] & 0x07) << 8u)
| ((U16)frame->data[3u] << 0u);
}
// Unpack Encoding
sigFmt.start = frame->data[4u];
sigFmt.size = frame->data[5u];
sigFmt.order = (frame->data[6u] & 0x80) ? BIG_ENDIAN : LITTLE_ENDIAN;
sigFmt.isSigned = frame->data[6u] & 0x40;
// Save to EEPROM
status = serWriteSigFmt(sigFmtAddrs[sig], &sigFmt);
if (status != OK) {
return ERR;
}
// Update copy in RAM
sigFmts[sig] = sigFmt;
return OK;
}
static void
echo(const CanFrame *frame) {
CanFrame response;
response.id = frame->id;
response.rtr = frame->rtr;
for (response.dlc = 0u; response.dlc < frame->dlc; response.dlc++) {
response.data[response.dlc] = frame->data[response.dlc] + 1u;
}
canTx(&response);
}
// Handle a Signal Control Frame.
// See `doc/datafmt.pdf'
static Status
handleSigCtrlFrame(const CanFrame *frame) {
Signal sig;
if (frame->rtr) { // REMOTE
sig = frame->id.eid & 0xF;
return respondSigCtrl(sig); // respond with the signal's CAN ID and encoding format
} else { // DATA
return setSigFmt(frame);
}
}
// Generate the output signal being sent to one of the gauges.
// Raw is the raw signal value extracted from a CAN frame.
static Status
driveGauge(Signal sig, Number raw) {
Status status;
U16 val;
if (sig >= NSIG) {
return ERR;
}
// Lookup gauge waveform value in EEPROM table
status = tabLookup(&tbls[sig], raw, &val);
if (status != OK) {
return ERR;
}
switch (sig) {
case SIG_TACH:
// TODO
break;
case SIG_SPEED:
// TODO
break;
case SIG_AN1:
dacSet1a(val);
break;
case SIG_AN2:
dacSet1b(val);
break;
case SIG_AN3:
dacSet2a(val);
break;
case SIG_AN4:
dacSet2b(val);
break;
default:
return ERR; // invalid signal
}
// TODO
}
// Handle a frame potentially holding a signal value.
static Status
handleSigFrame(const CanFrame *frame) {
Status status, result;
Signal sig;
Number raw;
result = OK;
// Search for signal with this ID
// Exhaustive because message may contain multiple signals.
for (sig = 0u; sig < NSIG; sig++) {
if (canIdEq(&frame->id, (const CanId *)&sigFmts[sig].id)) {
// Extract raw signal value from frame
status = sigPluck((const SigFmt *)&sigFmts[sig], frame, &raw);
if (status == OK) {
status = driveGauge(sig, raw); // generate output signal
}
result |= status;
}
}
return result;
}
static void
txErrFrame(Status err) {
CanFrame frame;
frame.id = (CanId){.isExt = true, .eid = ERR_CAN_ID};
frame.rtr = false;
frame.dlc = 2u;
frame.data[0u] = (err >> 8u) & 0xFF;
frame.data[1u] = (err >> 0u) & 0xFF;
(void)canTx(&frame);
}
void
__interrupt() isr(void) {
U8 rxStatus;
CanFrame frame;
Status status;
if (INTCONbits.INTF) { // CAN interrupt
rxStatus = canRxStatus();
switch (rxStatus & 0x7) { // check filter hit
case 0u: // RXF0: calibration table control
canReadRxb0(&frame);
(void)handleTblCtrlFrame(&frame);
break;
case 1u: // RXF1: signal ID control
canReadRxb0(&frame);
status = handleSigCtrlFrame(&frame);
if (status != OK) {
txErrFrame(status);
}
break;
default: // message in RXB1
canReadRxb1(&frame);
(void)handleSigFrame(&frame);
}
INTCONbits.INTF = 0; // clear flag
}
// TODO: remove
static U8 ctr = 0u;
if (PIR1bits.TMR1IF) {
if (++ctr == 228u) { // 10 period
frame.id = (CanId){.isExt=false, .sid=0x123};
frame.rtr = false;
frame.dlc = 3u;
frame.data[0u] = 0x11;
frame.data[1u] = 0x22;
frame.data[2u] = 0x33;
canTx(&frame);
ctr = 0u;
}
PIR1bits.TMR1IF = 0;
}
}
|